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Abstract— As databases become increasingly ubiquitous, one 
of the relevant problems involves maintaining data in a 
consistent and error free manner across remote systems. 
Considering the magnitude of data contained in the diverse 
existing types of databases, the bottleneck occurs at 
transmission bandwidth of the network during the 
synchronized exchange of database information during 
updates. As opposed to a complete cell by cell comparison for 
all tuples required for database validation - In this paper, the 
proposed design achieves validation of a source database with 
a remote target in constant space complexity by passing a data 
structure, Bloom Filter as a message. Any discrepancy is 
reported in a verbose manner and the false probability rate 
based on the bloom filter parameters can be tuned to achieve 
an optimal balance between spurious hits and transmitted 
message size. The analysis of three bloom filter variants 
namely Scalable, Cuckoo and Standard Bloom filter is carried 
out to test feasibility in the context of the proposed design by 
measuring their computation time and the size of the bloom 
filter array produced that will be transmitted across the 
network. 
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I. INTRODUCTION

Databases have become ubiquitous for both commercial 
and noncommercial applications. Depending on the usage 
scenario, they have varied sizes ranging from a few 
megabytes to petabytes and may be RDBMS or NoSQL in 
nature. One of the prerequisites of most applications 
involve this data being maintained in an error-free and 
consistent manner and in synchronization across multiple 
remote systems. This is achieved through an arduous, well-
timed exchange of database information and updates across 
the network with the bottleneck occurring at the 
transmission bandwidth of the network. 
Bloom filters are a data structure having a bit array and a 
set of hash functions associated for populating the array. It 
can posit whether an element is a part of the set or not with 
a certain probability of occurrence of false positives. 
Typical validation would involve two systems, a source and 
target machine - with the target verifying the presence or 
alteration of a tuple with the desired facility of verbose 
error reporting. If any discrepancy is detected during the 
analysis of the Bloom Filter sent as a message, it may 
initiate a cell by cell transfer or comparison. 
Significant savings in terms of bits transmitted across the 
network can be obtained by passing the data structure 
Bloom Filter as a message among systems involving 
validation. Processing during compression or 

decompression as well as lookup computation time are 
secondary metrics in this particular application as 
compared to the transmission size and false positive rate. 
This paper aims to analyze the performance of three 
variants of Bloom Filters and the tuning of their parameters 
for remote database validation using cloud based message 
passing to determine which delivers the least false 
probability ratio while minimizing the size of the 
compressed network message.  

II. LITERATURE REVIEW

A. Bloom Filter
Bloom filter originated in 1970s and since has been widely
used as a space-efficient alternative for fast matching in IP
routing, in distributed databases for element membership
query problems and other network applications.
A compact set representation is provided by standard
bloom filters. They support insert and lookup operations.
The False Positive(FP) rate of a Bloom Filter can be tuned.
The query result would either be “definitely not” or
“probably yes”. The trade-off is between the efficiency and
the space that the bloom filter requires.
There are k-hash functions. All bits are initially “0”. In
order to hash an item, k-hash functions insert the item in k-
positions bit by bit, thereby setting k-bits to 1. For lookup,
k bits corresponding to the hash functions are checked. If
all the k-bits are “1”, then the item may be present and the
query returns true. However, this may be a false positive
but false negatives are absent in Bloom Filters.

B. Bloom Filter Variants
Bloom-1 or Fast Bloom Filter has a slightly higher false
positive rate given a memory size but reduces the overhead
for query operations [1]. The new Scalable Bloom Filter
provides false positive rate as low as 21.3% of the dynamic
Bloom filter presented before and the querying CPU time
increasing logarithmically rather than linearly [2].
Large data sets can successfully be validated using a series
of Bloom filters (where each BF validates one subset of the
database) whose error rate can be controlled by enlarging
the capacity of the DBA. These bloom filters provide high
performance as they can be accessed in parallel [3]. A
bloom filter variant for fast and scalable applications such
as secure broadcast in wireless networks involves the use of
Tiger hash function that has greater resistance to collisions
due to nonlinear avalanche bit generation. Compact
mapping is done by using LSFR counter arrays and whole
design can be reconfigured by FGPA implementation [4].
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One-Hashing Bloom Filter uses one base hash function and 
modulo operations involving a consecutive prime numbers 
set to have properties of distinct independent hash functions 
while minimising the computation overhead involved in 
hashing [5].A Bloom Filter variant called TinySet has 
greater space efficiency along with partial support for 
removals for false positive rates less than 2.8 % [6]. 
Another approach involves a Bloom Filter based tree that 
works by assigning bloom filters to a fraction of interior 
nodes for searching a data element in tree structured-data 
and can prune out subtrees from the dataset [7]. A tree 
structured Bloom Filter has ‘i’ hash functions (‘i’ being the 
depth of the tree), constant time complexity and uses 1 
Dimensional Bit array for efficient storage of bits 
[8].Cuckoo filters store the fingerprints of bits in hash 
tables due to which items can dynamically be added or 
removed. Moreover, it uses substantially low space (when 
FP rate is less than 3%) and provides better lookup 
performance [9]. A bloom filter variant called Partitioned 
BF ( Par-BF ) involves a trade-off balance between low-
overhead and fast performance using a group of formulas to 
tune essential parameters for dynamic data sets. It supports 
fast matching in parallel and outperforms Scalable Bloom 
Filter and Dynamic Bloom Filter(DBF) with a memory 
overhead less than DBF through it’s garbage collection 
policy [10].  
 
The metrics for performance measurement for a Bloom 
Filter include memory requirement, false positive rate and 
overhead for queries. Bloom filters are valid in applications 
where false positives can be tolerated but false negatives 
are unacceptable [11]. 
 

III. METHODOLOGY 

 
Fig 1. Overall system diagram for a cloud-based validation system using 

bloom filter 

 
1. Create a Bloom Filter from the Source Database. 

This is done by using each row as a single entry 
into the bloom filter. The efficiency of generating 

this bloom filter can be quickened by parallelizing 
the entry into the bloom filter by splitting the total 
number of rows among threads where each 
performs hashing over it’s allotted dataset. 

2. This bloom filter is sent to the cloud server over 
the web interface using the HTTP interface. The 
size of the bloom filter determines the amount of 
bandwidth utilized in this transaction and can be 
reduced by using a bloom filter variant that uses 
compression on it’s internal computed data 
structure that shall be passed as a message. 

3. While implementing care, the above two steps has 
to be maintained that there should be no false 
negativity introduced, and the false positive rate 
shouldn’t be too high as there is a tradeoff 
involved in the data structure size and false 
positive probability rate. 

 
p – False positive probability 
k – Number of hash functions 
n – Size of the input 
m – Size of the bloom filter 

4. The cloud server maintains snapshots of every 
bloom filter sent to it, for target databases to 
validate themselves at different points of time. 
Also an updates to a particular bloom filter 
snapshot can be stored as a new snapshot or the 
same bloom filter can be rewritten, to save server 
memory. If historical database validation is 
desired, a versioning system of these snapshots 
can be maintained on the server.  

5. The target database can send an HTTP request to 
the cloud server requesting a bloom filter 
(snapshot) corresponding to a particular source 
database instance at a given time.  

6. The target bloom filter can validate itself against 
the received bloom filter and it can be found out 
which rows of the target are not maintained with 
integrity or are missing in the source, due to 
various reasons such as corruption of primary key. 

 
IV. RESULTS 

 
Fig 2. Comparison of the sizes of the bloom filter generated v/s the false 

positive probability 
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Fig 3. Comparison of the time taken to generate the bloom filter v/s the 
false positive probability 

We compared three different variants of bloom filters 
(standard, cuckoo and scalable) on the basis of their false 
positive probability, size of bloom filter data structure 
computed and the time taken to generate the bloom filter. 
These parameters decide the effectiveness of using the 
bloom filter in the aforementioned architecture and 
application.  
We have fixed the number of rows to 1 million records in 
the source/target database for each test, and the test is run 
on a machine with 8GB RAM, Intel i7 4th Generation, 2.4 
GHz X8. 
For each test, we have varied the false positive probability, 
to find the minimum possible size of the bloom filter bit 
array that is generated per variant and the time taken to 
generate this bit array and for encapsulating it to be sent as 
a network message. The above graphs measure space of the 
network message and time taken for generating it as a 
function of the false positive probability rate that is 
achieved. 
In the first graph we can see that standard bloom filter has 
the lowest file size generated in comparison to the other 
two variants. This goes in accordance with the theory that 
there is an overhead with the cuckoo and scalable filters 
when we create the data structure. 
In the second graph, we can see from our experimentation 
that the scalable filter is created in the shortest time. Hence 
in time critical application it would be more beneficial to 
go with a scalable bloom filter. 
From both the experiments we can see that the cuckoo filter 
has both moderate file size and generation time.  
Thus by looking at the above two graphs, we can conclude 
that when size is a major consideration and not time, we 
should stick to the standard bloom filter, whereas the 
scalable can be chosen when time is critical. Cuckoo filter 
has an intermediate performance so it can be chosen when 
both factors are important. 

V. CONCLUSION

The design elucidated in the paper would use Bloom Filter 
variants to remotely validate large databases in cloud 
environments. Through the results, it may be inferred that 
for this scenario, the standard bloom filter is best applied in 
networks with low bandwidth whereas a scalable bloom 
filter can be employed when the metric is quick creation 
time. 
This system can be extended to maintain a cloud based 
library of snapshots for target databases to validate against 
previous states of a source database. Thus, significant 
savings in terms of transmission bandwidth can be 
achieved.  
Since the false probability rate, hash functions and other 
parameters can be tuned, this design with constant space 
complexity will find versatile applications in remote 
database validations. 
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